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ν Oscillations 
Joe Grange                  Miami 2011            December 2011 

  Neutrinos oscillate!  One of the few concrete BSM 
results.  Implications: 
  oscillation shape strongly supports massive ν’s 
  ν Hamiltonian eigenstates are NOT flavor eigenstates 
  Lepton flavor is not conserved (νe→νµ ,  νµ→ντ  , νe→ντ ) 

  Embarrassingly brief formalism: ν born of type α 
propagates according to  

ψ(x) = ΣkUαk × eipkx−iEkt

PMNS mixing matrix - describes mixing 

between ν flavor state α, mass state k
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ν Oscillations 
Joe Grange                  Miami 2011            December 2011 

  Under the approximations of only two ν masses and 

after travelling a distance L the ν born as α has survival 
probability (detected as α) of  

and an oscillation probability of  

pk ≈ E − m2
k

2Et ≈ x

P (να → να) = 1− sin22θ sin2

(
∆m2L

4E

)

P (να → νβ) = sin22θ sin2

(
∆m2L

4E

)

α != β
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“Appearance” 
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ν Oscillations 
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ν Oscillations 
Joe Grange                  Miami 2011            December 2011 

Physics: θ osc. amplitude; Δm2 osc. frequency


Experiment: E ν energy, L distance from ν creation to detector  


α != β



  Large Electron-Positron collider data: exactly 3 active, 
light ν flavors 
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ν Oscillations 
Joe Grange                  Miami 2011            December 2011 

  We also know of 3 
ν’s: νe, νµ, ντ  

  3 ν’s require two 
independent sets of 
Δm2 mixing 
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ν Oscillations 
Joe Grange                  Miami 2011            December 2011 

Confirmation with Super-K,             
K2K and MINOS data


Confirmation with SNO,       
Kamland data


This is observed and confirmed! 
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ν Oscillations 
Joe Grange                  Miami 2011            December 2011 

Confirmation with Super-K,             
K2K and MINOS data


Confirmation with SNO,       
Kamland data


However… 
Evidence for high Δm2 mixing 

from LSND experiment 

some hints from cosmology 


and reactor data as well




  LSND: Liquid Scintillator Neutrino Detector (Los 
Alamos, 1990s) 
  Evidence of νe excess in νµ beam 
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LSND 
Joe Grange                  Miami 2011            December 2011 

LSND excess: 87.9 ± 22.4 ± 6.0 (3.8 σ)
 Highly controversial! 


2 ν 
osc. fit
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Enter MiniBooNE!  
Mini Booster Neutrino Experiment 

Joe Grange                  Miami 2011            December 2011 

LSND 

  Neutrino beam from accelerator 
(decay-at-rest, average Eν ~ 35 
MeV) 

  νµ too low E to make µ or π 


  Proton beam too low E to make K 

MiniBooNE 

  Neutrino beam from accelerator 
(decay-in-flight, average                
Eν ~ 800 MeV) 

  New backgrounds: νµ CCQE and 
NC π0 mis-id for oscillation search 

  New backgrounds: intrinsic νe 
from K decay (0.5% of p make K) 

  MiniBooNE has same L/E as LSND but different 
systematic errors.  Quick comparison: 



Booster Neutrino Beam 
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Booster


target and horn
 detector
dirt 
absorber


primary beam
 tertiary beam
secondary beam

(protons)
 (mesons)
 (neutrinos)


decay region
FNAL Booster


Booster
 Target

Hall



8.9 GeV/c momentum protons 
extracted from Booster, steered 

toward a beryllium target


Booster Neutrino Beam 
Joe Grange                  Miami 2011            December 2011 
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Booster


target and horn
 detector
dirt 
absorber


primary beam
 tertiary beam
secondary beam

(protons)
 (mesons)
 (neutrinos)


νµ  


decay region
FNAL Booster


π+ 

π+ π- 

π- 

Magnetic horn with reversible polarity 
focuses either neutrino or anti-neutrino 

parent mesons


(“neutrino” vs “anti-neutrino” mode)


Booster Neutrino Beam 
Booster Neutrino Beam 

Joe Grange                  Miami 2011            December 2011 



  6.1m radius Cherenkov 
detector houses 800 tons 
of undoped mineral oil, 
1520 PMTs in two 
regions 
  Inner signal region  
  Outer veto region (35 cm 

thick) 
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Detector 

Nucl. Instr. Meth. A599, 28 (2009)  
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  Flux prediction based 
exclusively on external 
data - no in situ tuning 

  Dedicated π production 
data taken by HARP 
collaboration, measured 
8.9 GeV/c 

 on MiniBooNE replica 
target 
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HARP collaboration, 
Eur. Phys. J. C 52 29 (2007) 

Neutrino Flux 

π- production 

Joe Grange                  Miami 2011            December 2011 
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Neutrino Flux 

  Combining HARP data with detailed Geant4 simulation 
gives the flux prediction at the MiniBooNE detector for 
positive and negative focusing horn polarities  

MiniBooNE collaboration,  
Phys. Rev. D 79, 072002 (2009)   

Joe Grange                  Miami 2011            December 2011 



  Stable running since 2002 

  POT received from Booster: 
  6.4 × 1020 in ν mode 
  8.6 × 1020 in ν mode (analyzed), ~30% more data coming! 
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A BooNE of Data 
Joe Grange                  Miami 2011            December 2011 
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Particle ID Basics 
Joe Grange                  Miami 2011            December 2011 

  PID based almost exclusively on timing and topology of 
PMT hits 



  Form charge and timing PDFs, fit for track parameters 
under 3 hypotheses 
1.  Electron 
2.  Muon 
3.  Superposition of two γ’s from π0 decay  
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E 

t,x,y,z 
light 

Particle ID Analysis 

   Apply energy-dependent cuts on 
L(e/µ), L(e/π) and π0 mass to search 
for single electron events 

  Plot events passing cuts as a 
function of reconstructed νe energy 
and fit for two-ν oscillations 
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Backgrounds 

Signal interaction νe CCQE:  νe + n -> e- + p , observe single e-


Intrinsic νe from µ originate from same π as νµ CCQE sample


Measuring νµ CCQE channel constrains intrinsic νe from π -> µ -> e decay


intrinsic 

mis-id 
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Backgrounds 

Signal interaction νe CCQE:  νe + n -> e- + p , observe single e-


Intrinsic νe from µ originate from same π as νµ CCQE sample


Measuring νµ CCQE channel constrains intrinsic νe from π -> µ -> e decay


intrinsic 

mis-id 

νe from µ± 
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Backgrounds 

intrinsic 

mis-id 

At high energy, νµ flux is dominated by K production 

Measuring νµ CCQE at high energy constrains kaon 
production, and thus intrinsic νe from K 

Also use external measurements from HARP 

νe from K±, K0 

Sanford-Wang fits to world K+/K0 data 
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Backgrounds 

intrinsic 

mis-id 

Measured in MiniBooNE 

mis-ID π0 

Phys. Rev. D81, 013005 
(2010) } 
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Backgrounds 

intrinsic 

mis-id 

mis-id Δ 

About 80% of our NC π0 events come from resonant Δ production 

Constrain Δ→Nγ by measuring the resonant NC π0 rate, apply known branching fraction 
to N, including nuclear corrections 
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Backgrounds 

intrinsic 

mis-id 

Come from ν events in surrounding dirt 

Pileup at high radius and low E 

Fit dirt-enhanced sample to extract dirt event rate 
with 10% uncertainty 

dirt events 
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Backgrounds 

intrinsic 

mis-id 

Come from ν events in surrounding dirt 

Pileup at high radius and low E 

Fit dirt-enhanced sample to extract dirt event rate 
with 10% uncertainty 

dirt events 

Every major source of background 
can be internally 

 constrained by MiniBooNE. 
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νµ     νe Appearance Data! 
Joe Grange                  Miami 2011            December 2011 

Surprise! 

     Neither perfect agreement with background nor LSND-like signal! 
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νµ     νe Appearance Data! 
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Below 475 MeV 

     Excess is 128 ± 20 (stat) ± 39 (syst) events (3σ excess) 
     Shape inconsistent with 2ν oscillation interpretation of LSND 
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νµ     νe Appearance Data! 
Joe Grange                  Miami 2011            December 2011 

Above 475 MeV 
     Excellent agreement with background predictions 
     Region of highest sensitivity to an LSND-like 2ν mixing hypothesis, use 
it to exclude that model assuming CP conservation

     Observe 408 events, expect 386 ± 20 (stat) ± 30 (syst) 
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νµ     νe Appearance Data! 
Joe Grange                  Miami 2011            December 2011 

  Neutrino-mode appearance 
analysis excludes LSND-like 
oscillations at 90% CL 
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Low E Next Step: MicroBooNE 
Joe Grange                  Miami 2011            December 2011 

  Low E excess either unexpected background or new physics - 
must be explained!  Ambiguous between e, γ-like events 

  MicroBooNE: next-generation liquid argon TPC with excellent e/γ 
resolution 

  Construction expected soon 

γ
e 
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Updates to Anti-Neutrino Analysis: 
Flux Revisited 

  Significant neutrino content in anti-neutrino beam  

  Detector not magnetized; cannot separate contribution based on 
µ charge 

 Phys. Rev. D 79, 072002 (2009)   

Joe Grange                  Miami 2011            December 2011 



  First measurement of neutrino contribution to anti-
neutrino beam with non-magnetized detector 

  3 independent, complementary 
measurements 
  µ+/µ- angular distribution 
  π- capture 
  µ- capture 
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  Demonstration of techniques 
for other non-magnetized 
detectors looking for CP  
  NOνA, T2K, LBNE, etc.  

Phys. Rev. D81: 072005 (2011)


Joe Grange                  Miami 2011            December 2011 

Updates to Anti-Neutrino Analysis: 
Flux Revisited 
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SciBooNE 

  SciBooNE: a fine-grained tracking detector 50m 
downstream of proton target in same ν beam 

  SciBooNE provides powerful check of upstream beam content 

Joe Grange                  Miami 2011            December 2011 



  Tracking power of SciBooNE allows sensitivity to ν parent 
rates through track multiplicity 

  More visible tracks -> higher energy ν’s 
  one track: mostly µ-only 
  two: µ + hadron 
  three: µ + 2 hadrons 
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  Extracted K+ rate: 0.85 ± 0.11 
  applied to MiniBooNE ν analysis  

Joe Grange                  Miami 2011            December 2011 

Updates to Anti-Neutrino Analysis: 
Flux Revisited 

Phys. Rev. D84: 012009 (2011)
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νµ     νe Appearance Data! 
Joe Grange                  Miami 2011            December 2011 

Below 475 MeV 
       38.6 ± 18.6 excess events 

Entire energy region

      57.7 ± 28.5 excess events




  Data favors 2ν oscillation fit over null 
hypothesis at 91.1% CL  
  (Fit above 475 MeV) 
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νµ     νe Appearance Data! 
Joe Grange                  Miami 2011            December 2011 



> 3 neutrinos not excluded from 2010 
cosmology analyses 
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2010 νe Appearance (5.66e20 POT) 
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  “LSND is right?!?” 

  Eν < 475 MeV: 
  1.3σ excess (by counting)  

  Eν > 475 MeV: 
  1.5σ excess (by counting) 
  Fit to 2ν osc. prefers BF 

over null at 99.4%  

  Fluctuations happen! 
  ambiguous which direction 

which data set fluctuated, 
of course  

Phys. Rev. Lett. 105: 1818001 (2010)




νe, νe 
appearance 
comparison 
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Both (Current) Data Sets 
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combined νe, 
νe analysis 
underway 

(CP violating model) 
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Both Data Sets 
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  Model independent comparison to LSND: L/E 

LSND


MiniBooNE


ν̄ν
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Joint MiniBooNE-SciBooNE νµ 
Disappearance Analysis  

  By comparing rate and shape information in νµ CC interactions 
between the two detectors, set limits for νµ disappearance 
  world’s strongest limit at      

 10 < Δm2 (eV2) < 30  

  Constrains νµ   νe oscillations 
as well as other, more exotic 
models 
  extra dimensions, CPT 

  Forthcoming νµ disappearance 
analysis   

Joe Grange                  Miami 2011            December 2011 

arxiv: 1106.5685




  Common ν beam and ν nuclear target, so many systematic errors 
cancel!  Majority of remaining is MiniBooNE detector error 

  New BooNE proposal: MiniBooNE-like near detector for more 
sensitive osc. measurements 
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Joint MiniBooNE-SciBooNE νµ 
Disappearance Analysis  

Joe Grange                  Miami 2011            December 2011 

(LOI: 0910.2698)




  sensitivity with 1yr running at      
L = 200m (current MB L ~540m) 
  νe appearance 
  νµ disappearance  
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“BooNE” 

Joe Grange                  Miami 2011            December 2011 

(LOI: 0910.2698)
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  νe appearance analysis exposes unexpected low energy 
excess mostly incompatible with oscillations 
  MicroBooNE to test details soon 

  νe appearance data is consistent with LSND, but will need 
more data to definitively discriminate 
  more data on the way, but becoming dominated by syst. errors  
  “BooNE” near detector would help immensely 

  Simultaneous νe, νe fit to CP violating model underway 

  Joint MiniBooNE-SciBooNE νµ disappearance results sets 
strong limits 
  corresponding νµ analysis underway 
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Conclusions 
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Thanks for your attention! 
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Thanks! 

Joe Grange                  Miami 2011            December 2011 
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BACKUP 



> 3 neutrinos not excluded from 2010 
cosmology analyses 

52 

νe Appearance Details 

Joe Grange                  Miami 2011            December 2011 

  χ2 probability of 93% 
compatible with no-osc. 

  99% compatible with best 
fit 
  sin2(2θ) = 10-3, Δm2 = 4 eV2 

  Under joint analysis with 
LSND data and errors, 2ν 
osc. hyp. for LSND ruled 
out at 98% CL 

Phys. Rev. Lett. 102: 101802 (2009)




> 3 neutrinos not excluded from 2010 
cosmology analyses 
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2010 νe Appearance (5.66e20 POT) 
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  Eν < 475 MeV: 
  1.3σ excess (by counting)  

  Eν > 475 MeV: 
  1.5σ excess (by counting) 
  Fit to 2ν osc. prefers BF 

over null at 99.4%  

  Fluctuations happen! 
  ambiguous which direction 

which data set fluctuated, 
of course  

Phys. Rev. Lett. 105: 1818001 (2010)




Gallium anomaly 
  GALLEX and SAGE 

radiochemical experiments 
combined for 4 calibration runs 
with MCi source 
  counted 71Ga + νe  71Ge + e-  
  all 4 runs observed event deficit, 

with improved flux prediction     
R = (obs/pred) = 0.86 ± 0.06 (1σ) 
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GALLEX 

  νe disappearance? 

PRD 83: 073006 (2011) 

Gallium Anomaly 

Joe Grange                  Miami 2011            December 2011 



  Results indicate the νµ 
flux is over-predicted 
by ~30% 

  Fit also performed in 
bins of reconstructed 
energy; consistent 
results indicate flux 
spectrum shape is well 
modeled < 600 0.65 ± 0.22 0.98 ± 0.18 

600 - 900 0.61 ± 0.20 1.05 ± 0.19 

> 900 0.64 ± 0.20 1.18 ± 0.21 

Inclusive 0.65 ± 0.23 1.00 ± 0.22 55 

µ+/µ- Angular Fits 

Joe Grange                  Miami 2011            December 2011 



  (outdated) future νe sensitivity 
  to give feel for how errors scale with 

POT 

56 

νµ     νe Future Sensitivity 
Joe Grange                  Miami 2011            December 2011 



  Cross sections at MiniBooNE 
energy sparsely measured 

  No sub-GeV νµ cross sections 
  Vital for future CP studies  
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Physics Goals 2 

  Recent results suggest these 
cross sections are more 
interesting than we thought! 
(later)  

Pre-MiniBooNE σ’s 

Joe Grange                  Miami 2011            December 2011 



µ- capture measurement 

 By requiring (µ-only/µ+e)data = (µ-only/µ+e)MC and 
normalization to agree in the µ+e sample we can 
calculate a νµ flux scale       and a rate scale   
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Predicted neutrino content in the  
µ+e sample, for example 

µ- capture 

Joe Grange                  Miami 2011            December 2011 



 By requiring (µ-only/µ+e)data = (µ-only/µ+e)MC and 
normalization to agree in the µ+e sample we can 
calculate a νµ flux scale        and a rate scale   

 Results: 
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PRELIMINARY 

µ- capture measurement 
µ- capture 

Joe Grange                  Miami 2011            December 2011 


